Abstract

BackgroundPeri-implantitis is a biological complication that affects soft and hard tissues around dental implants. Implantoplasty (IP) polishes the exposed implant surface, to decontaminate it and make it less prone to bacterial colonization. This study investigates whether a higher clinical crown-to-implant-ratio (CIR) reduces implant fracture resistance and whether implants are more fracture-prone after IP in the presence of 50% of bone loss.MethodsForty-eight narrow platform (3.5 mm) 15 mm long titanium dental implants with a rough surface and hexagonal external connection were placed in standardized bone-like resin casts leaving 7.5 mm exposed. Half were selected for IP. The IP and control groups were each divided into 3 subgroups with different clinical CIRs (2:1, 2.5:1 and 3:1). The implant wall width measurements were calculated using the software ImageJ v.1.51 through the analysis of plain x-ray examination of all the samples using standardized mounts. A fracture test was performed and scanning electron microscopy was used to evaluate maximum compression force (Fmax) and implant fractures.ResultsIP significantly reduced the implant wall width (P < 0.001) in all reference points of each subgroup. Fmax was significantly higher in the 2:1 subgroup (control = 1276.16 N ± 169.75; IP = 1211.70 N ± 281.64) compared with the 2.5:1 (control = 815.22 N ± 185.58, P < 0.001; IP = 621.68 N ± 186.28, P < 0.001) and the 3:1 subgroup (control = 606.55 N ± 111.48, P < 0.001; IP = 465.95 N ± 68.57, P < 0.001). Only the 2.5:1 subgroup showed a significant reduction (P = 0.037) of the Fmax between the controls and the IP implants. Most fractures were located in the platform area. Only 5 implants with IP of the 2:1 CIR subgroup had a different fracture location (4 fractures in the implant body and 1 in the prosthetic screw).ConclusionsIP significantly reduces the fracture resistance of implants with a 2.5:1 CIR. The results also suggest that the CIR seems to be a more relevant variable when considering the resistance to fracture of implants, since significant reductions were observed when unfavorable CIR subgroups (2.5:1 and 3:1 CIR) were compared with the 2:1 CIR samples.

Highlights

  • Peri-implantitis is a biological complication that affects soft and hard tissues around dental implants

  • The main objectives of this research were: (1) to analyze whether an increased CIR reduces the fracture resistance of implants with IP versus control implants, and (2) to assess whether implants subjected to IP are more prone to fracture in comparison with control implants, regardless of the CIR, in the presence of 50% bone loss

  • Significant reductions in F­max between the control and IP implants were only found in the 2.5:1 CIR subgroup (P = 0.037), all the IP samples showed less resistance to fracture than their respective controls (Table 2, Fig. 4)

Read more

Summary

Introduction

Peri-implantitis is a biological complication that affects soft and hard tissues around dental implants. IP is effective in the long term for arresting bone loss caused by PI, both alone and in combination with surgical regenerative procedures and does not seem to be associated with any biological or mechanical complication of importance [9,10,11,12,13]. Thermal increases during the procedure that could affect the bone, lower resistance to fractures due to reducing the thickness of the implant walls, and the local and systemic biological repercussions that the dispersion of titanium particles might have in the long term have been signaled as potential problems of IP performance [14,15,16,17,18,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call