Abstract

Microstructural control in thin-layer multilayer ceramic capacitors (MLCC) is one of the present day challenges to maintain an increase in capacitive volumetric efficiency. This present paper opens a series of investigations aimed to engineer the stability of ultra-thin Ni electrodes in BaTiO3-based multilayer capacitors using refractory metal additions to Ni. Here, pure Ni and Ni–1 wt.% Cr alloy powders are used to produce 0805-type BME MLCCs with 300 active layers and with dielectric and electrode layer thickness around 1 μm. To investigate the continuity of Ni electrodes, both MLCC chips with pure and doped electrodes were sintered at different temperatures for 5 h. It is found that the continuity of Ni electrodes is improved most likely due to the effect of Cr on the low-melting point (Ni,Ba,Ti) interfacial alloy layer formation. The interfacial alloy layer is not observed when Cr is segregated at Ni-BaTiO3 interface in the Cr-doped samples, while it is found in all undoped samples. The interfacial alloy layer is believed to increase mass-transfer along the Ni-BaTiO3 interfaces facilitating an acceleration of Ni electrodes discontinuities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.