Abstract

This paper presents a study of the influence of variation of counter doping thickness on short channel effect in symmetric double-gate (DG) nano MOSFETs. Short channel effects are estimated from the computed values of current-voltage (I-V) characteristics. Two dimensional Quantum transport equations and Poisson equations are used to compute DG MOSFET characteristics. We found that the transconductance (g<SUB>m</SUB>) and the drain conductance (g<SUB>d</SUB>) increase with an increase in p-type counter-doping thickness (T<SUB>c</SUB>). Very high value of transconductance (g<SUB>m</SUB>= 38 mS/㎛) is observed at 2.2 ㎚ channel thickness. We have established that the threshold voltage of DG MOSFETs can be tuned by selecting the thickness of counter-doping in such device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.