Abstract

Pyramidal neurons in the rat CA1 hippocampal area contain both mineralocorticoid (MR) and glucocorticoid receptors (GR) which bind the endogenous adrenal steroid corticosterone with differential affinity. With intracellular electrophysiological recording techniques we have investigated how corticosterone affects the membrane properties of these cells. We observed that low doses (1 nM) of corticosterone or aldosterone can, through MR, reduce the spike frequency accommodation and afterhyperpolarization (AHP) evoked by a short depolarizing current in pyramidal neurons. As the accomodation/AHP can be considered as an intrinsic mechanism of CA1 neurons to attenuate transmission of excitatory input, the MR-mediated action might potentially enhnce cellular excitability in the CA1 area. Higher doses of corticosterone or selective glucocorticoids were able to reverse the MR-mediated effect on accommodation/AHP, eventually increasing particularly the amplitude of the AHP. GR-mediated events may thus potentially suppress excitability in the hippocampal CA1 area. Not only current- but also transmitter-induced membrane effects were affected by the steroids. Firstly, GR-ligands were able to suppress a temporary noradrenaline-evoked decrease in accommodation/AHP. Secondly, membrane hyperpolarizations induced by serotonin were reduced by MR-agonists. We propose that cellular excitability in the hippocampus is at least partly under control of coordinative, antagonistic MR- and GR-mediated effects on electrical activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.