Abstract

The results of a detailed structural investigation on the influence of cooling rates in the synthesis of lithium- and manganese-rich 0.5Li2MnO3·0.5LiCoO2 composite electrode materials, which are of interest for Li-ion battery applications, are presented. It is shown that a low-temperature, intermediate firing step, often employed in cathode synthesis, yields a minor secondary component representing a polydisperse distribution of lattice parameters, not found in the absence of low-temperature treatments. However, regardless of the heating and cooling conditions employed, all samples present two distinctly different local environments as evidenced by X-ray absorption fine structure spectroscopy (XAFS) and nuclear magnetic resonance (NMR) analysis. Transmission electron microscopy (TEM) data show discrete domain structures that are consistent with the XAFS and NMR findings. Furthermore, high resolution synchrotron X-ray diffraction (HR-XRD), as well as the XAFS and NMR data show no discernible differences be...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call