Abstract

AbstractThe mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp‐knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction‐independence characteristics. Nevertheless, the high‐cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°‐oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow‐cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.