Abstract

Abstract An investigation on the cooling-induced crystallization in three thermoplastic polyurethanes based on MDI, PTMG, and 1.4-BD as chain extender with different hard segment content is reported. Thermal transitions were determined using differential scanning calorimetry (DSC) measurements at different cooling rates, and thermal stability was studied by thermogravimetric analysis. Changes in Raman spectra were useful to correlate the thermal transitions with changes in the morphology of the polymers. The dissimilarity in the composition gave different rheological behavior in the molten state, indicated by the temperature dependence of the viscosity. The mechanical properties and the crystallinity was influenced not only by the cooling rate but also by the hard segment content. Thermoplastic polyurethanes with more hard segment content formed more crystalline hard domains as evidenced by the DSC and atomic force microscopy results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.