Abstract

The underlying intention of the present study is to analyze the steady incompressible magneto hydrodynamic Carreau Dusty fluid over a stretching sheet with exponentially decaying heat source. Convective conditions are considered to control the thermal boundary layer. Similarity transformations were used to convert partial differential equations (PDEs) to a system of nonlinear ordinary differential equations (NODEs) which are solved numerically by employing Runge-Kutta with Newton’s technique. The effect of pertinent parameters on velocity and temperature profiles of both fluid and dust phase within the boundary layer has been studied by considering various values of controlling parameters. In addition, skin friction coefficient and reduced heat transfer coefficient have been examined for various values of the governing parameters. It is observed that the rate of heat transfer depreciates with space dependent heat generation and enhanced with the existing convective condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.