Abstract

Choline (Cho) signal identification and quantification in (1)H MRS are used in breast cancer diagnosis. However, an influence of the gadolinium-based contrast agent on the Cho amplitude has been reported experimentally. This study aims to identify the impact of gadolinium-based contrast agents on Cho detection and quantification in postcontrast breast MRS. Consecutive patients were recruited prospectively and randomly allocated to two groups. Group A received a neutral (gadolinium diethylenetriaminepentaacetic acid bis-methylamide) and group B an ionic (gadolinium diethylenetriaminepentaacetic acid) contrast agent, each at a dosage of 0.1 mmol/kg. First, the presence of Cho was identified visually. Then, the normalized Cho intensity in malignant lesions was quantified. Multivariate analysis was applied to identify independent influencing factors on Cho. Sixty-three lesions were investigated [A, n = 34; B, n = 29; 43 malignant (one bilaterally malignant), 20 benign]. Cho was identified visually in 14 of 20 malignant tumors in group A and 12 of 22 malignant tumors in group B (p = 0.477). Normalized Cho differed significantly (p = 0.001) between groups A (mean, 26.8 ± 6.0 AU) and B (mean, 18.2 ± 12.5 AU). No linewidth differences were identified (p > 0.05). Multivariate analysis revealed only group membership (A versus B) as an independent predictor of Cho (p = 0.017). The results suggest stronger negative effects of an ionic relative to a neutral gadolinium-based contrast agent on breast tumor MRS in vivo. These results should be considered when conducting and comparing quantitative Cho measurements in the breast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call