Abstract

To elucidate the communication between the middle and inner ear, and the fluid dynamics of the inner ear with the perilymphatic fistula (PLF) of the round window membrane (RWM). The PLF of the RWM was created in nine guinea pigs. Gadolinium diethylenetriamine pentaacetic acid bismethylamide (Gd-DTPA-BMA) was delivered into the middle ear and followed in the inner ear using a 4.7 Tesla MRI. Pressure was delivered to the external ear canal of PLF ear in an attempt to enhance the inner ear uptake of Gd-DTPA-BMA. The immediate loading of Gd-DTPA-BMA in the scala tympani of the basal turn was ablated by the outflow of perilymph through the leaking RWM while the oval window passage for Gd-DTPA-BMA was enhanced. There was more Gd-DTPA-BMA distribution in the scala tympani than in the scala vestibuli in the second turn of the PLF cochlea (within 20 min). Signal in the vestibulum and scala vestibuli of the basal turn and rest part of PLF cochlea was greater than that of the control cochlea with intact RWM within 30 min. Pressure applied to the external ear canal tended to enhance the loading of Gd-DTPA-BMA in the perilymphatic scalae of the PLF cochlea. The enhanced oval window passage of Gd-DTPA-BMA was proven by the distorted distribution in the inner ear with PLF. The radial communication of cochlear perilymph was supported by the Gd-DTPA-BMA gradient among the perilymphatic scalae. Applying positive pressure to the external ear canal caused backflow of perilymph into the cochlea which has a potential of transmitting microbes from the middle ear into the inner ear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call