Abstract

Using atomistic and coarse-grained molecular dynamics (MD) simulations, we explain the shifts in lower critical solution temperature (LCST)-like phase transitions exhibited by elastin-like peptides (ELPs) upon conjugation to other macromolecules (e.g. collagen-like peptides or CLPs). First, using atomistic simulations, we study ELP oligomers with the sequence (VPGFG)6 in explicit water, and characterize the LCST-like transition temperature as one at which the ELP oligomers undergo a change in "hydration state". In agreement with past experimental observations of Luo and Kiick, upon anchoring ELP oligomers to a point to mimic ELP oligomers conjugated to another macromolecule, there is an apparent slight shift in the transition temperature to lower values compared to free (unconjugated) ELP oligomers. However, these atomistic simulations are limited to small systems of short ELPs, and as such do not capture the multiple chain aggregation/phase separation observed in experiments of ELPs. Therefore, we utilize phenomenological coarse-grained (CG) MD simulations to probe how conjugating a block of generic-LCST polymer to another rigid unresponsive macromolecular block impacts the transition temperatures at concentrations and length scales larger than atomistic simulations. We find that when multiple LCST polymer chains are conjugated to a rigid unresponsive polymer block, the increased local crowding of the LCST polymers shifts the transition marked by onset of chain aggregation to smaller effective polymer-polymer attraction energies compared to the free LCST polymer chains. The driving force needed for aggregation is reduced in the conjugates compared to free LCST polymer due to reduction in the loss of polymer configurational entropy upon aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.