Abstract
It is widely thought that confinement of an amorphous polymer alters the chain mobility, which affects the temperature and intensity of the glass transition. The present study sought to determine whether the same effects extend to semicrystalline polymers. Confinement was achieved by forced assembly of hundreds of alternating layers of poly(ethylene oxide) (PEO) with either poly(ethylene- co-acrylic acid) or polystyrene. The confinement gradually reduced the intensity of the PEO β-relaxation as the layer thickness decreased from the microscale to the nanoscale. By considering the changes in crystalline morphology that accompanied layer confinement, it was possible to completely account for the reduction in relaxation intensity using standard mechanical models. The viscoelastic behavior of the amorphous phase was satisfactorily represented by a modified standard linear solid (SLS). The amorphous and crystalline contributions were combined using a combination of parallel and series coupling in accordance with the Takayanagi model. No adjustment in the viscoelastic parameters of the modified SLS was required, indicating that there was no significant change in amorphous chain dynamics even in layers as thin as 45 nm.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have