Abstract

Transport and noise measurements of multiwall carbon nanotubes in high-density polyethylene matrix are reported. In these composites current transport occurs through a random tunnel junctions network, formed by adjacent carbon nanotubes. Low-frequency noise investigations reveal a 1/f behavior induced by resistance fluctuations. An unusual temperature dependence in samples with different nanotube concentration is found. This can be explained by a transition from a fluctuation-induced tunneling mechanism to a thermally activated regime, occurring at increasing nanotube concentration and resulting in a decrease in the overall noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.