Abstract

The present study aimed to investigate the effect of combined hyperbaric oxygen (HBO) and chondroitinase ABC (ChABC) enzyme therapy in a rat model of spinal cord injury (SCI) and to explore the underlying mechanisms. A total of 48 healthy male Wistar rats were randomly divided into six groups: Sham, SCI, vehicle, HBO, ChABC enzyme and HBO + ChABC. Excluding the sham group, SCI was established in rats by a clip compression injury and rats subsequently received HBO treatment for 2 weeks with or without an intraspinal injection of 0.1 U/µl ChABC. Neuromotor functions were examined using the Basso-Beattie-Bresnahan locomotor rating scale and the inclined plane assessment at baseline and for 4 weeks following SCI establishment. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also measured, in addition to the expression of glycogen synthase kinase-3β (GSK3β) and aquaporin 4 (AQP4). Results revealed that combined HBO and ChABC treatment significantly improved neuromotor function compared with the HBO or ChABC treatments alone. HBO and/or ChABC treatment significantly increased SOD and decreased MDA levels, as well as GSK3β expression, compared with the sham and SCI rats. The combined HBO and ChABC treatment significantly inhibited SCI-induced AQP4 expression, but ChABC alone did not. Functional recovery in the HBO + ChABC group was significantly increased compared with the HBO or ChABC groups. These results indicate that combined HBO and ChABC treatment is more effective in treating SCI than either therapy alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call