Abstract
A series of comb polymers poly(2-(dimethylamino)ethyl methacrylate (DMAEMA)-co-methacrylic acid (MAA)-co-methoxy polyethylene glycol methacrylate (MPEGMA)) (poly(DMAEMA-MAA-MPEGMA, DMM) were synthesized and used as N-methyl-2-pyrolidinone (NMP)-based lithium iron phosphate (LFP) suspension dispersants. The effects of the grafting density of the carboxyl group as the anchoring group and the chain length of the side chain of PEG, which plays the role of spatial site resistance, on the rheological properties and suspension stability of the slurry were systematically investigated. By investigating the adsorption amount and thickness of DMM on the LFP surface, combined with calculations based on the scalar law and Flory theory, the molecular structure of the comb polymer dispersant was revealed to influence the adsorption and dispersion performance. The dispersion of LiFePO4 was due to the synergistic effects of adsorption and steric hindrance effect, which resulted that dispersants with medium carboxyl density and PEG side chain length can improve the dispersion performance and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.