Abstract

This article describes a comprehensive quantitative analysis on effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in acoustically anisotropic austenitic weld materials. The quantitative results are presented for following general interfaces (a) Isotropic-Anisotropic, (b) Anisotropic-Isotropic, (c) Fluid-Anisotropic, (d) Anisotropic-Fluid, (e) Anisotropic-Anisotropic, (f) Anisotropic-Free surface occur during the ultrasonic non destructive evaluation of austenitic weld materials. Explicit analytical expressions are presented for energy reflection and transmission coefficients at an interface between two arbitrarily oriented transversely isotropic materials. By applying explicit analytical expressions for energy reflection and transmission coefficients, numerical results are presented for several columnar grain orientations of the transverse isotropic austenitic weld material including both real and complex domain of the reflected and transmitted normal component of slowness vectors. Valid domains of incident wave vector angles, angular dependency of energy reflection and transmission coefficients and critical angles for reflected and transmitted waves are discussed. The existence of a reflected (or) transmitted second branch of quasi shear vertical waves and its consequence to the ultrasonic non destructive testing of austenitic weld materials are investigated. The presented comprehensive quantitative evaluation provides an overview on the effect of anisotropic properties on energy reflection and transmission coefficients in columnar grained austenitic weld materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call