Abstract

A systematic experimental investigation was conducted using lab processed low carbon 0.08C-2.0Mn-Cr-Mo steel microalloyed with Ti/Nb to evaluate the influence of initial hot-rolled microstructures on the kinetics of austenite formation and decomposition after cold-rolling and subsequent annealing. Coiling temperature as a major hot rolling parameter was used to obtain different types of hot-rolled microstructures. Dilatometer and continuous annealing simulator were employed for austenite formation studies and annealing simulations, respectively. It was found that the coiling temperature affects the processes occurring during heat treatment in continuous annealing lines of full hard material: ferrite recrystallization, austenite formation during continuous heating and austenite decomposition during cooling. A decrease in coiling temperature accelerates the recrystallization of ferrite and nucleation of austenite, which results in formation of refined ferrite-martensite structure. The effect of initial hot rolled structure on final mechanical properties after continuous annealing was also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call