Abstract

This paper deals with one of the origins and trigger mechanisms responsible for the observed performance enhancements in the hybrid scenario experiments conducted in Korea Superconducting Tokamak Advanced Research (KSTAR). The major contribution to the performance improvement comes from a broader and higher pedestal formation. The increase of fast ion pressure due to a plasma density decrease also contributes substantially to the global beta. Although the reduced core plasma volume resulting from the pedestal expansion has a negative effect on the core thermal energy, a considerable confinement improvement observed in the inner core region limits the degradation. The one significant characteristic of high-performance discharges is the presence of Coherent Edge-localized Mode (CEM) activity. CEM is triggered during the pedestal recovery phase between typical ELM crashes and has been found to be related to the increase of particle and heat transport. It appears to underlie two commonly observed phenomena in high-performance hybrid scenario discharges in KSTAR; pedestal broadening and continuous density decrease. Despite the associated transport increase, CEM activities can induce performance enhancement. With the pedestal broadening, ELM crashes become delayed and weakened, which, in turn, allows for a higher pedestal. Moreover, the density decrease directly increases fast ion pressure by extending the beam-slowing-down time. The linear gyrokinetic analysis reveals that the increase of fast ions could initiate positive feedback loops, leading to the stabilization of Ion Temperature Gradient mode in the inner core region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call