Abstract
Development of advanced scenarios, an important experimental goal of the Korea superconducting tokamak advanced research (KSTAR) project, has just begun. The safety factor (q) profile is a key to achieve these advanced scenarios. Particularly the hybrid scenario, one of the advanced scenarios, can be established generally with low magnetic shear (s) at the center with central q-value above unity so to avoid sawtooth instability. This q-profile was successfully produced using early divertor formation during a plasma current ramp-up phase in KSTAR. Auxiliary heating was also employed during the current ramp-up phase to delay the inductive current diffusion to the center of the plasma. In addition to the early divertor formation method, the target q-profile was attempted to be achieved by modifying the plasma current waveform using the so-called, ‘current-overshoot’ method and the timing of L-mode to H-mode transition. In this work, the confinement characteristics of these sawtooth-free regimes are investigated. The global energy confinement time is calculated and compared with that of conventional H-modes in KSTAR. The confinement enhancement factor reveals that the newly developed discharges are not improved over H-modes contrary to results of other tokamaks. To investigate the reason, transport modeling is performed self-consistently with an integrated simulation package incorporating plasma equilibrium, transport, and heating and current drive. The current ramp-up phase is simulated and impact of early divertor formation, current-overshoot, and early L–H transition on the target q-profile and s/q profile is addressed. The s/q profile is found to be not improved in these discharges compared with hybrid scenarios reported in other tokamaks. Based on these results, future experimental directions are addressed to access the hybrid regimes in KSTAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.