Abstract
Statement of problemA nanographene-reinforced polymethyl methacrylate (PMMA) has been introduced for definitive prostheses. However, knowledge on the surface roughness and stainability of this material is lacking. PurposeThe purpose of this in vitro study was to compare the surface roughness and stainability of nanographene-reinforced PMMA with those of a prepolymerized PMMA and a reinforced composite resin after coffee thermocycling. Material and methodsDisk-shaped specimens (Ø10×1.5-mm) were prepared from 3 different A1-shade millable resins (prepolymerized PMMA [M-PM; PMMA]; nanographene-reinforced PMMA [G-CAM; G-PMMA]; reinforced composite resin [Brilliant Crios; RCR]). Surface roughness (Ra) values were measured before and after conventional polishing by using a noncontact profilometer. Initial color coordinates were measured over a gray background with a spectrophotometer after polishing. Specimens were then thermocycled in coffee for 5000 cycles. Measurements were repeated after coffee thermocycling, and color differences (ΔE00) were calculated. Ra values among different time intervals were analyzed by using either the Friedman and Dunn tests (RCR) or repeated measures analysis of variance (ANOVA) and Bonferroni corrected paired samples t tests (PMMA and G-PMMA), while Ra values within a time interval were analyzed by using either the Kruskal-Wallis and Dunn tests (before polishing) or 1-way ANOVA and Tukey HSD (after polishing) or Tamhane T2 tests (after coffee thermocycling). ΔE00 values were analyzed by using 1-way ANOVA and Tukey HSD tests, while color coordinates of the specimens after polishing and after coffee thermocycling were compared by using paired samples t tests (α=.05). ResultsAll materials had their highest Ra values before polishing (P≤.011), while differences after polishing and after coffee thermocycling values were nonsignificant (P≥.140). PMMA had higher Ra than RCR before polishing (P=.002), and RCR had higher values than G-PMMA after polishing and after coffee thermocycling (P≤.023). RCR had the highest ΔE00 (P<.001). Polishing increased the b∗ values of PMMA, and coffee thermocycling increased the a∗ values of G-PMMA and all values of RCR (P≤.012). ConclusionsThe tested materials had similar and acceptable surface roughness after polishing. The surface roughness of materials was not affected by coffee thermocycling. Considering the reported color thresholds, all materials had acceptable color change, but the computer-aided design and computer-aided manufacturing composite resin had perceptible color change after coffee thermocycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.