Abstract

BackgroundThis study aimed to compare the effect of chitosan (CH) and hydroxyapatite (HP) on the surface roughness and microhardness of a conventional glass ionomer cement (CGIC) and a resin modified glass ionomer cement (RMGIC). Material and Methods60 disk-shaped specimens (2mm x 6mm) were prepared in 6 groups; group I: CGIC, group II: RMGIC, group III: CGIC + 15% volume CH solution in liquid, group IV: CGIC +10% weight micro-HP in powder, group V: RMGIC + 15% volume CH, group VI: RMGIC + 10% weight micro-HP. After storage in deionized water at room temperature for 24 hours, the surface roughness and microhardness of the specimens were measured using a surface profilometer and Vickers microhardness (VHN) tester, respectively. Data were analyzed using two-way ANOVA, Tukey HSD test and paired t-test (P<0.05). ResultsThe microhardness values of RMGIC and CGIC decreased significantly with the addition of micro-HP (P<0.001). None of the CH-containing GICs showed significant changes in microhardness (P = 0.552). The VHN values of CGIC were higher than RMGIC, regardless of the added substance (P<0.001). The surface roughness (Ra) values (μm) of both RMGIC and CGIC decreased significantly with the addition of CH (P = 0.004). The incorporation of micro-HP into GICs did not have a significant effect on surface roughness values (P = 0.700). The RMGIC showed less Ra values compared to the CGIC regardless of the added substance (P<0.001). The lowest and highest Ra values were observed in RMGIC + CH and CGIC + micro-HP groups, respectively. ConclusionsThe addition of CH to GIC and RMGIC reduced the surface roughness and did not have an adverse effect on the microhardness. Mixing GIC and RMGIC with micro-HP resulted in microhardness reduction and did not affect the surface roughness. Key words:Glass ionomer, hydroxyapatite, chitosan, hardness, surface roughness

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call