Abstract

We report the effect of Co2N impurity on the superconducting properties of δ-MoN thin films grown by polymer-assisted deposition on c-cut sapphire (Al2O3). The films show a superconducting transition temperature of 10.4 K and an upper critical field Hc2(0) perpendicular to the film surface around 3 T. The latter corresponds to a relatively large coherence length ξ, which enhances the two-dimensional limit when the magnetic field is applied parallel to the film surface. In comparison with pure δ-MoN films, the inclusion of Co2N impurity in the δ-MoN films could significantly modify the critical current density at the vortex-free state. The ability to tune the superconducting properties of metal-nitride superconductors by introducing chemically and structurally compatible impurity may find potential applications for superconducting single-photon detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.