Abstract

Vanadium dioxide exhibits a metal to insulator transition close to room temperature, making it very interesting in particular for radio frequency (RF) device applications. Here, we compare the structural and RF properties of VO2 thin films grown by magnetron sputtering on c-cut and r-cut sapphire substrates. The epitaxial growth of VO2 on c-cut sapphire gives rise to several crystallographic variants for the insulating M1 phase. Moreover, during the structural transition, simultaneous presence of both metallic and insulating phases is evidenced by x-ray diffraction over a large temperature range. Films grown on r-cut sapphire exhibit only two variants and present a very narrow temperature range of their structural transition. Interestingly, such structural differences of the films grown on c- and r-cut sapphire substrates have very little influence on their dc resistivity, while the transmission of the RF signal through the metallic phase was found much lower on c-cut than on r-cut sapphire. This supports the fact that r-cut sapphire is preferable for VO2-based RF device fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.