Abstract
Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracking reaction. In this study, the Co/Zeolite Y and Co-Mo/Zeolite Y catalysts were prepared by impregnation and ion exchange methods. Characterizations of the catalysts were carried out by X-Ray Diffraction (XRD) and gravimetric acidity. The catalysts were tested for coal tar conversion to liquid fuel under various temperatures, amount of catalyst and hydrogen flow rates in a fixed bed flow reaction system. Liquid fuels products were analyzed by gas chromatography (GC). The XRD Spectra indicated that the addition of Co and Mo metals did not affect catalysts structure, however it alters the percentage of crystallinity. The addition of Co metal using impregnation method caused reduction in crystallinity, while the addition of Mo caused improvement of crystallinity. The Co-Mo/Zeolite Y catalyst with highest crystallinity was obtained by loading using ion exchange method. The addition of Co and Mo metals caused increasing acidity. However, the increasing composition of Co and Mo loaded on Zeolite Y catalyst decreased the yield of liquid fuels from coal tar. It can be concluded that the yields of liquid fuels and the composition of gasoline fractions from hydrocracking of coal tar were highly dependent on acidity of the catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Chemical Reaction Engineering & Catalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.