Abstract
The structural, electronic and optical properties of transition metal doped porphyrin (TM@P; TM = Mn, Co, Fe, Cu, Ni, Zn) as well as the effect of CO adsorption on TM@P properties have been investigated using the density functional theory (DFT). The presented results include adsorption energies, bond lengths, electronic configurations, magnetic moments, density of states, frontier molecular orbitals, and UV-Vis. spectra. Our calculation results show that, the CO molecule favors to be adsorbed on TM-doped Porphyrin with its carbon head. The most energetically stable adsorption of CO is reported for Fe doped Porphyrin. The interaction between CO molecules with TM@P is attributed to donation-back donation as well as charge transfer mechanisms. Mn, Co and Fe-doped porphyrins have visible active nature which may be affected by CO adsorption, whereas, Ni, Cu and Zn-doped porphyrins have UV active nature which not affected by CO adsorption. These results may be meaningful for CO removal and detection.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have