Abstract

Abstract We report the effect of substituting Co for a metalloid element on the glass formation, thermal properties, and magnetic behaviors of Fe80CoxB14−xSi2P3Cu1 (x = 0, 2, 4, 6) alloy ribbons. The addition of Co decreased the thermal stability of the alloy against crystallization and expanded the heat treatment temperature region of this alloy family. Fe80Co4B10Si2P3Cu1 alloy, which was annealed under optimal conditions, exhibited good soft magnetic performance that was characterized by a high saturation magnetic flux density of 1.84 T, a high effective magnetic conductivity of 12,601 at 1000 Hz, a low coercivity of 5.3 A/m, and a low core loss of 62 W/kg at 1000 Hz and 1.5 T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.