Abstract

In present time, developments in reinforced polymer composites have acquired preferential attention for high performance and high precision applications like aerospace, marine and transportation. Fibre reinforced polymer (FRP) composites are being substituted because of their low density, higher strength, stiffness, impact resistance, and improved corrosion resistance. Further laminated composites exhibit superior in-plane mechanical properties that are mostly governed by the fibers. However, laminated FRP composites suffer from poor out of plane properties in some applications. These properties can further be improved by the addition of Nano fillers like carbon nanotube (CNT), graphene and so on. Curing cycle plays a very important role in drawing out the optimum property of glass fiber/epoxy (GE) composite. It is expected that the cure kinetics can further be altered by addition of CNT due to its higher aspect ratio. The main objective of this work is to study the effect of CNT addition on cure kinetics of GE composite as multi-segment adsorption of polymer takes place on the CNT surface. In this study effects of curing parameters on mechanical properties and glass transition temperature of CNT embedded glass fiber/epoxy composite (CNT-GE) has been evaluated. For this study control GE and CNT-GE (with 0.1 wt. %) laminates were fabricated using hand lay-up technique followed by hot compression. The curing parameters that were considered in the present investigation were temperature (80°C, 110°C, and 140°C) and time (0.5 hr, 3 hr and 6 hr). For different combination of above mentioned temperature and time, samples of GE and CNT-GE composites were post cured. Mechanical properties were determined by flexural testing using 3 point bending fixture on INSTRON-5967 and thermal properties i.e. glass transition temperature (Tg) determined by Differential Scanning Calorimeter (DSC) to evaluate the effects of curing parameters. For CNT-GE samples, No much variation observed in flexural modulus with increase in post curing temperature and time, but swift increment was observed in flexural strength at 140°C with increase in post cure time. Elevation in Tg observed with increase in temperature and time duration of post curing; highest Tg noted at 140°C-6hr. Optimum post curing parameters for CNT-GE composite observed to be 140°C-6hr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call