Abstract
Cold metal transfer (CMT) welding is an attractive welding technology for thin sheet aluminum alloys because of its low heat input, arc stability and spatter-free behavior during the welding process. The present research is mainly concerned with the effect of different heat input on microstructure and mechanical properties of CMT welding 2A14 aluminum alloy in 3 mm thickness. The results indicate that a welded joint with good quality can be achieved when the welding current is 105 A and welding speed is 8 mm/s. The weld width and porosity gradually increase along with the constantly increasing welding heat input. The center of the welded joint consists of a large number of fine equiaxed dendrites, and the gray matrix is uniformly distributed accompanied by a large number of dots and blocks as a white second phase, corresponding to the composition of the Al2Cu phase. The microhardness of welded joints under different welding heat input maintains relative stability and presents a certain softening degree; the base material is the highest, followed by the heat-affected zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.