Abstract

Abstract Because of multifunctional weirs installed as part of large river regulation works in Korea, water quality problems have arisen from environmental changes in tandem with decreased flow rates. However, there has been limited research into the green algae removal effect, water quality improvement in congested waters, dam and weir operations, and consequential riverbed changes. Studies regarding outflow in a basin, the application and development of sediment load output analysis methods, feasibility of related dam operations, and riverbed patterns have been separately performed. However, basins and rivers should be analyzed by an integrated method instead of an individual one. Therefore, in the present study, the effect of congestion on a river connected to a dam/weir and estuary bank was analyzed based on climate change scenarios HadGEM3-RA RCP 4.5 and 8.5, with the aim of integrating individual studies using watershed and river models. Flow was controlled by dam- and weir-related discharge simulations. Variations in the riverbed caused by the transfer of suspended load in the downstream region were analyzed for both long and short durations. The results of this analysis suggest that given future climate change scenarios, the width of the river and riverbed variations in the riverbed are expected to rise.

Highlights

  • Global warming and climate change are some of the gravest threats on earth, a fact agreed upon by most countries

  • We studied the upper stream of the Nakdong River basin and the section between the downstream area of Andong

  • Rainfall was analyzed by the climate scenario for 2100 (Figure 5)

Read more

Summary

Introduction

Global warming and climate change are some of the gravest threats on earth, a fact agreed upon by most countries. Many studies have aimed to develop strategic responses at a national level, such as policies to reduce greenhouse gas emissions, to mitigate in advance the risks of climate change and destruction of social systems (Mora & Zapata ).

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.