Abstract

The experiment aimed to compare the effects of citric acid residue (CAR) to that of three commonly used short-chain fatty acids on the fermentation quality, aerobic stability and structural carbohydrate degradation of lucerne ensiled with lactic acid bacteria (LAB) inoculants. Fresh lucerne was ensiled with distilled water (control), LAB inoculant (L), CAR+LAB inoculant (CL), formic acid+LAB inoculant (FL), acetic acid+LAB inoculant (AL) and propanoic acid+LAB inoculant (PL) for 50days. Chemical composition and microbial populations were determined after ensiling. The residual silages ensiled for 50days were evaluated for aerobic stability. Compared with control, CL, FL, AL and PL treatments significantly (p<0.05) decreased pH, ammonia nitrogen (NH3 -N) and butyric acid contents and increased lactic acid, acetic acid and propionic acid contents. Among them, CL silages had the lowest pH, dry matter and water-soluble carbohydrate (WSC) content, whereas the population of LAB and the lactic acid contents were highest. Besides, CL outperformed in enhancing fibre degradation, CL silages significantly decreased (p<0.05) neutral detergent fibre, acid detergent fibre, hemicellulose and cellulose contents compared with control and had the highest Flieg's point. All treated-silages improved the aerobic stability compared with control, of which L improved 32h, whereas CL, FL, AL and PL improved 46, 20, 46, >64h, respectively. Applying a combination of CAR and LAB inoculant improved the fermentation quality and structural carbohydrate degradation of lucerne silage and had a similar effect on aerobic stability compared with other three short-chain fatty acids. The CAR had a comparable effect on enhancing the fermentation quality compared with three short-chain fatty acids. Thus, the combination of CAR and LAB inoculant might be used as an ideal additive for lucerne silage making with low WSC and high moisture content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.