Abstract

The mechanisms of the influence of organics on Al transformation were not fully understood. This study investigated the effect of citric acid on Al speciation in partially neutralized aluminum solution. The partially neutralized solution was prepared with 20 mmol L −1 AlCl 3 without citrate (citrate/Al molar ratio of 0, control) or with citrate (citrate to Al molar ratios between 0.1 and 3.0) at pH between 3.0 and 7.0. The nature of aluminum hydrolytic products as influenced by citrate complexation was investigated by turbidity measurement, ferron kinetic color development, peak line width in 27Al nuclear magnetic resonance (NMR) deconvolution demodule quantitative methods, and the MinteqA2 chemical speciation program. Sulfate precipitates from Al solution as influenced by citrate were examined by X-ray diffraction (XRD) analysis and atomic force microscopy (AFM). The turbidity of the Al solution increased with increasing pH values. Increases in citrate/Al molar ratio from 0 to 0.1 decreased dramatically the turbidity due to citrate complexation. The 27Al NMR peak at 6 ppm of the Al solution at a citrate/Al molar ratio of 0.5 shifted to 8 and 10 ppm in the solutions at citrate/Al molar ratio of 1.0 and 3.0, respectively. Comparison of 27Al NMR data and the data obtained from the MinteqA2 chemical speciation program, indicate that the Al-citrate complexes as revealed by 27Al NMR data are largely Al(citrate), AlH(citrate) +, and Al ( citrate ) 2 3 ‐ complexes (99–112%) in the pH range of 4.5–6.5. The non-detected Al fractions by the MinteqA2 program account for 82–99% of the non-detected Al fractions by NMR quantitation in the same pH range. The AFM of sulfate precipitates from solutions with low citrate/Al molar ratios (i.e., 0.01, pH 4.5, aged 40 days) shows that Al 13 sulfate precipitates were ellipse-shaped. These ellipse-shaped precipitates were aggregated when solution pH increased from 4.5 to 7.0 (aged 40 days), indicating the fast hydrolytic rate of Al at high pH. The sulfate precipitates from solution with a high citrate/Al molar ratio (i.e., 0.05, pH 4.5, aged 40 days) also shows aggregate of particles, and XRD non-crystallized precipitates the hampering effect of citrate on Al precipitates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.