Abstract

Noninsulin-dependent diabetic KK mice, aged 90-100 days, with hyperinsulinemia and insulin resistance were treated with either metformin (N = 13) or water (control, N = 10) orally at a concentration of 50 mg/kg twice daily for 28 weeks. Age-matched nondiabetic Swiss Webster (SW) mice were also similarly treated. Liver and skeletal muscle glycogen synthase and phosphorylase enzymes were determined in all groups of mice. Both enzymes were significantly lower in control KK than in control SW mice. Metformin did not influence either of these enzymes in nondiabetic SW mice. However, it significantly increased the active form of glycogen synthase (a form) in both the liver and muscle of KK mice. Metformin also increased the active form of phosphorylase (a form) in the liver but not in the muscle of these mice. Hepatic glycogen content was similar in both control and metformin-treated KK mice. However, the muscle glycogen content was significantly higher in metformin-treated than in control KK mice. These data suggest that metformin preferentially stimulates glycogen synthesis in skeletal muscle, and this seems to be responsible for the observed improvement in fasting glucose and glucose response to an oral glucose load in KK mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call