Abstract

In this work we have investigated the effect of cholesterol (CHOL) in phospholipid monolayers on a series of phosphatidylcholines differing in acyl chain composition. We have used the CHOL proportion that abolishes the gel (Lβ)-to-liquid-crystalline (Lβ) transition in bilayers in order to investigate the mixing properties and laterally-segregated domains formed by specific phospholipid-CHOL ratios at the air-water interface. The binary monolayers where formed by mixing CHOL with 1,2-palmitoyl-sn-glycero-3-phos-phatidylcholine (DPPC);1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC); 1-pal-mitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (PSPC); 1-palmitoyl-2-oleoyl-sn-gly-cero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-linoleyl-sn-glycero-3-phosphatidyl-choline (PLPC), respectively. From surface pressure-area (π-A) isotherms the isothermal compression modulus were calculated, and the mixing properties of the monolayers obtained by performing a basic surface thermodynamic analysis. From the excess Gibbs energy, the interaction parameter and the activity coefficients were also calculated. The study of the monolayers was complemented by determining the molecular dipole moment normal to the plane of the monolayer. The existence of laterally segregated domains was assessed by atomic force microscopy (AFM) of Langmuir-Blodgett films (LBs) extracted at 30 mNm-1. To get insight into the nature and composition of the observed domains force spectroscopy (FS) based on AFM was applied to the LBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.