Abstract

ABSTRACTThe semiconducting properties of passive films formed on copper, in anaerobic alkaline sodium chloride solution, were studied using Mott–Schottky analysis and electrochemical impedance spectroscopy, based on the point defect model. Results showed that the corrosion resistance increased with increasing potential, which was attributed to a well crystallised, refined grain structure, and a thicker passive film at higher potential. P-type semiconducting characteristics were obtained with or without chloride. The density of copper vacancies was approximately 1020 cm−3, and increased with the increasing chloride concentration, which was attributed to faster film-formation in a higher chloride environment. The diffusion coefficient of the defects, a key dynamic parameter for passive film breakdown, was in the range of 10−16–10−15 cm2 s−1, and increased with increasing chloride concentration, thus leading to a greater probability of pitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.