Abstract
In an effort to determine the C-20 chirality effect on the antiinflammatory activity of 17beta-glycolate esters, methyl 11beta,17alpha,20-trihydroxy-3-oxo-1,4-pregnadien-21-oate and its 9alpha-fluoro analog, their acetonide and their carbonate derivatives were synthesized and evaluated. The agents were tested for their binding potency to the macrophage glucocorticoid receptor, and their effect on LPS-induced nitric oxide generation in RAW 264.7 cells. The acetonide derivatives showed the highest binding affinity while the triols and carbonates bound rather poorly to the receptors. With the exception of the triols, the alpha-isomer in each pair of the agents exhibited higher binding affinity to the receptor than its corresponding beta-isomer, clearly indicating that C-20 chirality has a significant effect on antiinflammatory activity. In addition, the alpha-isomers of the acetonides showed substantially higher binding affinity than the parent compound, prednisolone. In contrast to the high binding activity exhibited by some of the acetonides, all of the agents showed weak inhibitory effect on NO generation. Metabolic inactivation during assessment of NO inhibition may play a role in the divergence noted between receptor affinity and the measured biologic activity resulting from the binding.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.