Abstract

This study explored the potential of using oil palm empty fruit bunch (OPEFB) in the production all-cellulose composite (ACC) films. The isolation process of the raw OPEFB fiber was carried out using chemical process to extract the OPEFB nanocellulose. The ACC films from the OPEFB and microcrystalline cellulose (MCC) were prepared using dimethylacetamide (DMAC) and lithium chloride solvent system whereby the partially dissolved cellulose was transformed into the matrix phase surrounding the remaining non-dissolved fiber. The ACC films containing 1, 2, 3 and 4 % (wt/vol) OPEFB cellulose and 3 % (wt/vol) microcrystalline cellulose (MCC) were prepared and the effects of 2-ethylhexyl acrylate chemical treatment of the OPEFB cellulose on tensile properties of the ACC film were investigated. Results indicate that the chemical treatment using 2-ethylhexyl acrylate has reduced the hydroxyl group composition in the cellulose and allowing greater dissolution of the cellulose during the formation of the ACC film. As a result, the tensile strength and modulus of elasticity of the ACC film were significantly enhanced. However, both untreated and treated ACC films experienced the reduction in both properties when the cellulose concentration was increased from 1 % to 4% (wt/vol), due to the saturation of the cellulose particles and non-homogeneity of the ACC system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call