Abstract

The purpose of this study was to investigate the effect of chemical enhancers (fatty acids and limonene) and iontophoresis on the in vitro permeability enhancement of insulin through porcine epidermis. The following fatty acids were used: palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3). Franz diffusion cells and the Scepter™ iontophoretic power source were used for the percutaneous absorption studies. Cathodal iontophoresis was performed at 0.2 mA/cm2 current density. Iontophoresis in combination with chemical enhancers synergistically increased (p < 0.05) the in vitro permeability of insulin. Linolenic acid (C18:3) produced greater permeability of insulin through epidermis than did other fatty acids during passive (44.45 × 10− 4 cm/h) and iontophoretic (78.03 × 10− 4 cm/h) transport. Lispro insulin flux was significantly (p < 0.05) greater through linolenic acid and limonene pretreated epidermis compared to untreated controls during both passive and iontophoretic transports. Using limonene as a penetration enhancer, a linear increase in the passive and iontophoretic flux of lispro insulin was observed with donor concentrations increasing from 100 IU/mL to 300 IU/mL. Iontophoretic flux through limonene-treated epidermis using 0.5 mA/cm2 current density and 300 IU/mL insulin donor solution was 45.63 IU/cm2/day. Using an iontophoretic patch size of 10 cm2, we would be able to deliver 50 IU of insulin within 3 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call