Abstract

Collagen was dehydrothermally treated (heat cured) by heating dry under vacuum at 60, 80, 100 and 120 degrees C. The change in stability was determined by subjecting to measurement of gross crosslinking, content of lysino-alanine and naturally occurring collagen crosslinks, shrinkage temperature (TM), susceptibility to digestion by lysosomal thiol proteases, and susceptibility to pepsin and trypsin. Morphological changes were examined by electron microscopy. The in vivo biodegradation of dehydrothermally treated collagen sponges was investigated using a rat lumbar muscle implantation model for up to 28 days. For all heat-cured collagens, the data strongly indicated that both crosslinking and denaturation/degradation was present in increasing quantities with increasing temperature of treatment, its level was too low (maximum 179 pmol mg-1) to account for the decreased solubility and increased molecular weight gross changes observed. Increasing resistance of treated collagen to both lysosomal cathepsins and pepsin correlated well with increased crosslinking and increasing temperature of the heat-curing process. However, increased denaturation/degradation of the collagen at higher temperatures was revealed by electrophoretic analysis, trypsin hydrolysis data and by electron microscopy. Differential scanning calorimetry (d.s.c.) correlated well with these results showing an increased level of denaturation in heated samples. The in vivo study showed little difference between control and heat-cured samples except for the material treated at 120 degrees C which was biodegraded in vivo at a significantly faster rate. The data shows, therefore, that crosslinking induced by the dehydrothermal treatment of collagen decreases its rate of proteolysis at acid pH in vitro. However, the simultaneous denaturation/degradation of the protein during the heat-cure process appears to be a more important factor in determining the fate of the material implanted into rat muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.