Abstract

Centrifugal casting was adopted for fabricating AlSi5Cu3/10 wt% SiC functionally graded metal matrix composite under three different centrifugal speeds of 800, 1000 and 1200 rpm, and hollow cylindrical components (φout 150 × φin 132 × 150 mm) were obtained. Microstructures of outer and inner periphery of all composites were observed through optical microscope and micro hardness of outer, intermediate and inner region of composite was tested using Vicker’s hardness tester. Results revealed that outer region of the composites centrifuged at all speeds have particle rich region with higher hardness. Abrasive wear experiments were conducted only on surface of particle rich region based on Taguchi’s technique by varying parameters such as centrifugal speed of casting process, rotating speed and applied load of abrasive wear tester. Analysis of variance results revealed that, centrifugal speed had highest significance on wear rate. Abraded surfaces were examined using scanning electron microscope and the maximum wear resistance was observed on particle rich zone of composite centrifuged at 1200 rpm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.