Abstract

The study reports the significance of carbon presence in affecting void nucleation in Fe. Without carbon, void nucleation rates decrease gradually at high temperatures but remain significantly high and almost saturated at low temperatures. With carbon present, even at 1 atomic parts per million, void nucleation rates show a low-temperature cutoff. With higher carbon levels, the nucleation temperature window becomes narrower, the maximum nucleation rate becomes lower, and the temperature of maximum void nucleation shifts to a higher temperature. Fundamentally, this is caused by the change in effective vacancy diffusivity due to the formation of carbon-vacancy complexes. The high sensitivity of void nucleation to carbon comes from the high sensitivity of void nucleation to the vacancy arrival rate in a void. The void nucleation is calculated by first obtaining the effective vacancy diffusivity considering the carbon effect, then calculating the defect concentration and defect flux change considering both carbon effects and pre-existing dislocations, and finally calculating the void nucleation rate based on the recently corrected homogeneous void nucleation theory. The study is important not only in the fundamental understanding of impurity effects in ion/neutron irradiation but also in alloy engineering for judiciously introducing impurities to increase swelling resistance, as well as in the development of simulation and modeling methodologies applicable to other metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.