Abstract
The relationship between synthesis conditions, structure, and properties of the baddeleyite-based engineering nanostructured composite zirconia ceramic (natural zirconia mineral) with modifying alloying elements is studied. The elaborated composites possess high physical and mechanical properties at a level that is not only not inferior, but even superior to those of analogous ceramics prepared from precipitated zirconia (e.g., density is 0.95 of the theoretical value, the hardness reaches 12 GPa, the Young modulus is 220 ± 15 GPa, and the fracture toughness reaches 9 MPa m0.5). The embedding of carbon nanotubes (CNTs) is shown to alter the physical and mechanical properties of ceramics: the hardness is somewhat reduced, but fracture toughness KC gains more than 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.