Abstract

ABSTRACT Fatigue cracking is a significant cause of failure in flexible pavements at moderate temperatures. Neat bitumen cannot properly perform at all temperatures and environmental conditions due to the increasing traffic volume. Consequently, this study examined the simultaneous usage of carbon nanotubes (CNTs) and the styrene-ethylene/propylene-styrene (SEPS) polymer as bitumen modifiers. The linear amplitude sweep (LAS) test and surface free energy (SFE) theory were used to determine the rheological characteristics and thermodynamic parameters of neat and modified bitumens, respectively. Using the SEPS nanocomposite up to 6% increased the fatigue life and moisture damage resistance of the asphalt mixtures by improving thermodynamic parameters such as adhesive free energy in dry and wet conditions. According to the LAS results, the modified bitumen outperformed the neat bitumen in terms of fatigue life under different strain levels. The fatigue life of the asphalt mixtures also decreased as the temperature increased from 10 to 20°C. However, for the mixtures containing the SEPS nanocomposite, the reduction in fatigue life was less noticeable due to the lower temperature sensitivity of the modified bitumen. The mixtures containing 6% SEPS nanocomposite demonstrated the highest performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.