Abstract

Polypropylene (PP) nanocomposites with 0.1, 0.2, 0.5, 0.8, 1.0 and 2.0 wt% multi-walled carbon nanotubes (MW-CNTs) were prepared via meltcompounding in a twin-screw extruder followed by injection molding. The effects of MW-CNTs additions on the structure, mechanical and photo-oxidation behavior of PP were studied using X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests and FT-IR apparatus. XRD results showed that only α-PP crystals form in the PP/MW-CNTs composites. DSC results confirmed that the corporation of MW-CNTs enhanced the nucleation process on PP crystallization. Results of the tensile tests showed that before photo-oxidation, the tensile strengths of the samples increased with the increase of MW-CNTs contents when the MW-CNTs contents were less than 1% wt, whilst the tensile strength decreased at higher MW-CNTs contents (>1% wt). When subjected to photo-oxidation, the tensile strengths of the samples decreased with the increasing photo-oxidation time. The resistance to accelerated photo-oxidation of PP/MW-CNTs composites was also compared with the photo-oxidation behaviour of the original polypropylene sample. At short photo-oxidation time, such as under 250 h, the rates of carbonyl formation for the PP/MW-CNTs composites are similar to that observed for the original polypropylene but at longer photo-oxidation times the carbonyl formation increases for lower MW-CNTs contents (0.1, 0.2, 0.5 and 0.8% wt), and decreases for higher MW-CNTs contents (1 and 2% wt). It was found that the MW-CNTs showed both anti-degradation and pro-degradation effects at different concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.