Abstract

The objective of our present work is to analyze the effect of carbon derived fillers (GO/RGO) on microstructural, mechanical and osteoinductive potential of xylan/chitosan/HAp composite matrix for bone tissue engineering application. The composites were characterized by FTIR, XRD and SEM to evaluate the composition and morphological parameters. Change in microstructural and mechanical properties of scaffold was observed on tuning filler type (GO/RGO) and concentration. Composites with GO and RGO content demonstrated significant mineralization potential with dense apatite growth. A comparative evaluation of cell viability using MG-63 cell line revealed improved cell response in samples incorporated with carbon fillers than their native parent matrix. MTT Assay revealed highest cell viability in composite with 0.75% RGO content. Cell attachment was observed in all the scaffold samples cultured for 72 h. The filler incorporated X/C/HAp matrix demonstrated increase in ALP activity over a period of 7 and 14 days. Synergistic effect of these fillers in enhancing in vitro mineralization tendency and osteogenic differentiation capability make the composites a potential candidate for bone tissue engineering construct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.