Abstract
The increasing bacterial drug resistance and the associated challenges in the treatment of infections warrant the search for alternative therapeutic methods. Hope is placed in antimicrobial peptides, which have a broad spectrum of action and are effective against strains which are resistant to conventional antibiotics. Antimicrobial peptides are also tested for their efficacy in the treatment of infections associated with the formation of biofilm. The aim of the present study was to examine the effect of Camel peptide on S. epidermidis and S. haemolyticus adhesion to and formation of biofilm on steel cortical bone screws and also on the process of reducing mature biofilm in orthopedic implants. The tests were performed on steel implants for osteosynthesis. The MIC value and MBEC values of the peptide were determined using the microdilution method in microtiter plates. The effect of the peptide on adhesion and biofilm formation, as well as on the activity on the preformed biofilm, was evaluated using quantitative methods and confocal microscopy. The presented research results indicate that the peptide exhibits very good antimicrobial properties against the analyzed strains. Concentrations above MIC reduced biofilm in the range of 90-99%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.