Abstract
Lithium titanate (LTO) anodes despite their low specific capacity of 175 mAhg−1 from a low volume change and intercalation voltage of 1.55 V vs lithium are excellent for automotive applications requiring fast and safe charging at times like regenerative braking. The present study focuses exclusively on the effect of calendering on the charging rate of LTO anodes. Calendering is a process where the current collector coated with the electrode, both anode, and the cathode is passed between two rolls at an elevated temperature to compact and improve the electrode’s energy density and electrochemical performance. The anode, LTO coated on aluminum foil current collector, calendered at about 42% (i.e. reducing the thickness of uncalendered anode from ~175 to ~100 μm) showed exceptional capacity retention even at 10C rate. Rate performance analyses reveal that calendering improves the capacity at high C-rate, whereas it doesn’t impact significantly at low C-rate. Electrochemical impedance spectroscopy measurements show that the resistive losses decrease with calendering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.