Abstract

The thermite reaction of nanoscale aluminum and molybdenum trioxide particles has revealed a paradoxical relationship between Al particle size and mixture bulk density. Specifically, with micron-scale Al particles, the thermite demonstrates an expected growth in flame speed with increased density, but nanoscale-Al-particle mixtures exhibit an opposing trend. This paper presents new experimental measurements of the thermal properties of this thermite as a function of Al particle size and applies a new oxidation mechanism in an effort to explain the paradoxical results between Al particle size and mixture bulk density. Results show that the nanocomposite's behavior is consistent with a new melt-dispersion oxidation mechanism and convective mode of flame propagation. Compaction-induced damage of the oxide shell and distortion of the shape of spherical particles, as well as reduced free space around Al nanoparticles suppress the melt-dispersion mechanism and reduce flame speed. An additional mode of energy transfer is proposed that is associated with molten Al clusters from the melt-dispersion mechanism that advance faster than the flame velocity. Micron-scale particle reactions may be governed by diffusion such that increased bulk density coincides with increased thermal properties and increased flame speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call