Abstract

The control of chemical exchange across heterointerfaces formed between ultrathin functional transition-metal oxide layers provides an effective route to manipulate the electronic properties of these systems. By determining the layer-resolved structural profile across the interface between the Mott insulator, LaTiO3 (LTO) grown epitaxially on SrTiO3 (STO)-buffered silicon by molecular beam epitaxy, we find that interfacial cationic exchange depends on the surface termination of the strained STO buffer. Using a combination of temperature-dependent transport and synchrotron x-ray crystal truncation rods and reciprocal space mapping, an enhanced conductivity in STO/LTO/SrO-terminated STO buffers compared to heterostructures with TiO2-terminated STO buffers is correlated with La/Sr exchange and the formation of metallic La1−xSrxTiO3. La/Sr exchange effectively reduces the strain energy of the system due to the large lattice mismatch between the nominal oxide layers and the Si substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.