Abstract

BackgroundThe fact that many laboratory rodent colonies were found to be parasite contaminated suggests a need for eradication to improve their quality for research and testing. However, the most anthelmintic are poisonous, and their application always entails some hazards to the host and interferes with the interpretation of the final results. The use of bryostatin as a potential anthelmintic drug is still a matter of controversy. Therefore, the present work was designed to examine the naturally extracted product bryostatin-1 from a marine bryozoan as a possible anthelmintic agent against Pinworms Syphacia muris.ResultsLight and scanning electron microscopy revealed normal appearance of worms collected from the infected groups with S. muris and untreated by bryostatin-1, while those collected from the bryostatin-1 treated rats revealed drastic morphological changes in the mouth parts, anus, and cuticle of all treated worms. Significant effects of bryostatin-1 on Syphacia infection were also detected in rats regarding the final body weights, average food consumption, and organ weights. Moreover, the drug has also improved the serum biochemical changes significantly in the infected rats nearly to the normal levels.ConclusionsThe study has provided morphological evidence of obvious effect of bryostatin-1 on the movement and feeding behavior of the parasite that lead to consequent weakness and death as well as improvement of the biochemical changes in the infected rats. The present study concluded that bryostatin-1 can be used as anthelmintic agent, although further studies are needed to insure the drug efficacy.

Highlights

  • The fact that many laboratory rodent colonies were found to be parasite contaminated suggests a need for eradication to improve their quality for research and testing

  • Light and scanning electron microscopy of untreated Syphacia muris Syphacia muris worms recovered from infected bryostatin-1-untreated rats are small worms and clear white when alive which possess a narrow pointed posterior extremities

  • Light and scanning electron microscopy (SEM) investigation revealed that the cephalic plate was quadrate in shape while the triradiate mouth opening was small and surrounded by three equal sized fleshy lips

Read more

Summary

Introduction

The fact that many laboratory rodent colonies were found to be parasite contaminated suggests a need for eradication to improve their quality for research and testing. Experimental rats and mice are usually infected with pinworms of the species Syphacia muris (order: Oxyurina). They are diverse nematode worms of main health concern (Khalil, Lashein, Morsy, & Abd El-Mottaleb, 2014). Syphacia muris commonly infects rats in laboratories at high prevalence even in well managed habitats (Perec-Matysiak, Okulewicz, Hildebrand, & Zalesny, 2006) and can interfere with the development of unrelated biological disorders (Trelis, Cortés, Fried, Marcilla, Esteban, et al, 2013). Screening for compounds of natural sources for anthelmintic activity, remains take great interest of scientists despite extensive use of synthetic chemicals in modern clinical practices all over the world (Verma, Gaherwal, Kanhere, & Prakash, 2014). Problems have emerged with the use of anthelmintics, notably the chemical residue and toxicity problems (Waller & Prichard, 1985), as well as development of resistance in helminthes to various anthelmintic compounds and classes (Gaherwal & Prakash, 2009)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call