Abstract

The present study was undertaken to examine whether blue LED irradiation induces cellular apoptosis in B16-F10 cells and whether it blocks the early growth of melanoma cells in mice. Irradiation with blue LED was observed to reduce cell viability and to induce apoptotic cell death, as accompanied by exposure of phosphatidylserine on the plasma outside membrane and an accumulation of a sub-G1 population. Furthermore, the mitochondrial membrane potential increased, and mitochondria-related apoptotic proteins (cytochrome c, caspase 3, and PARP) were observed. In addition, the level of intracellular superoxide anion (O2−) gradually increased. Interestingly the phosphorylation of p53 increased at earlier times under blue LED irradiation, but reduced after exposure for a longer time. Additionally, the thickness of the mice footpad injected with B16-F10 cells decreased significantly until the 9th day of blue LED irradiation, indicating the inhibition of the early growth rate of the melanoma cells. Our data demonstrate that blue LED irradiation induces apoptotic cell death by activating the mitochondria-mediated pathway and reduces the early growth rate of melanoma cells. Further studies are needed to elucidate the precise mechanism of blue LED in melanoma cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.